Dispersive Fourier transform using few-mode fibers for real-time and high-speed spectroscopy

نویسندگان

  • Yi Qiu
  • Chi Zhang
  • Kenneth K. Y. Wong
  • Kevin K. Tsia
چکیده

Dispersive Fourier Transform (DFT) is a powerful technique for real-time and high-speed spectroscopy. In DFT, the spectral information of an optical pulse is mapped into time using group velocity dispersion (GVD) in the dispersive fibers with an ultrafast real-time spectral acquisition rate (>10 MHz). Typically, multi-mode fiber (MMF) is not recommended for performing DFT because the modal dispersion, which occurs simultaneously with GVD, introduces the ambiguity in the wavelength-to-time mapping during DFT. Nevertheless, we here demonstrate that a clear wavelength-to-time mapping in DFT can be achieved by using the few-mode fibers (FMFs) which, instead of having hundreds of propagation modes, support only a few modes. FMF-based DFT becomes appealing when it operates at the shorter wavelengths e.g. 1-μm range--a favorable spectral window for biomedical diagnostics, where low-cost single mode fibers (SMFs) and high-performance dispersion-engineered fibers are not readily available for DFT. By employing the telecommunication SMFs (e.g. SMF28), which are in effect FMFs in the 1-μm range as their cut-off wavelength is ~1260 nm, we observe that a 3nm wide spectrum can be clearly mapped into time with a GVD as high as -72ps/nm and a loss of 5 dB/km at a spectral acquisition rate of 20 MHz. Moreover, its larger core size than the high-cost 1-μm SMFs renders FMFs to exhibit less nonlinearity, especially high-power amplification is implemented during DFT to enhance the detection sensitivity without compromising the speed. Hence, FMF-based DFT represents a cost-effective approach to realize high-speed DFT-based spectroscopy particularly in the biomedical diagnostics spectral window.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and hig...

متن کامل

Demonstration of minute continuous-wave triggered supercontinuum generation at 1 μm for high-speed bio-photonic applications

Ultra-broadband supercontinuum (SC) at 1-μm wavelength is regarded as diagnostics window in bio-photonics due to its large penetration depth in tissues and less Rayleigh scattering. Dispersive Fourier transform (DFT) is an important technique to realize the high-speed, ultra-fast and high-throughput spectroscopy. Thus, a stable light source with good temporal stability plays an important role i...

متن کامل

Dispersive Fourier transformation for fast continuous single-shot measurements

102 NATURE PHOTONICS | VOL 7 | FEBRUARY 2013 | www.nature.com/naturephotonics The real-time measurement of fast non-repetitive events is arguably the most challenging problem in the field of instrumentation and measurement1–4. These instruments are needed for investigating rapid transient phenomena such as chemical reactions, phase transitions, protein dynamics in living cells and impairments i...

متن کامل

Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading

Dispersive Fourier transformation is a powerful technique in which the spectrum of an optical pulse is mapped into a time-domain waveform using chromatic dispersion. It replaces a diffraction grating and detector array with a dispersive fiber and single photodetector. This simplifies the system and, more importantly, enables fast real-time measurements. Here we describe a novel ultrafast barcod...

متن کامل

Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window.

Dispersive fiber is well-regarded as the most viable candidate for realizing efficient optical time-stretch process--an ultrafast spectroscopic measurement technique based on the wavelength-to-time mapping via group velocity dispersion (GVD). Despite optical time-stretch has been anticipated to benefit a wide range of high-throughput biomedical diagnoses, the lack of commercially-available disp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012